Derivatives of tangent function and tangent numbers

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-order tangent and secant numbers

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Tangent numbers Tangent numbers of order k Secant numbers Secant numbers of order k Higher-order (or, generalized)...

متن کامل

Rationality and the Tangent Function

The irrational nature of values of the circular trigonometric functions at rational multiples of pi (angles with rational degree measure) has been well studied [L1, N, O, U, CT]. The tangent function takes a secondary role in these treatments. This is unfortunate since, “...the tan function may be considered more fundamental than either cos or sin” (Stillwell [S2], p. 156). Arguments for this v...

متن کامل

The (t,q)-Analogs of Secant and Tangent Numbers

To Doron Zeilberger, with our warmest regards, on the occasion of his sixtieth birthday. Abstract. The secant and tangent numbers are given (t, q)-analogs with an explicit com-binatorial interpretation. This extends, both analytically and combinatorially, the classical evaluations of the Eulerian and Roselle polynomials at t = −1.

متن کامل

Shape Classification Using Simplification and Tangent Function

In this paper we propose a new approach for image classification by simplifying contour of shape and making use of the tangent function as image feature. We firstly extract shapes from a sample image and connecting pixels of its contour. The extracted contour is simplified by our algorithm and converted into tangent function which is regarded as a feature. The tangent function represented a sha...

متن کامل

Fast computation of Bernoulli, Tangent and Secant numbers

We consider the computation of Bernoulli, Tangent (zag), and Secant (zig or Euler) numbers. In particular, we give asymptotically fast algorithms for computing the first n such numbers in O(n2(logn)2+o(1)) bit-operations. We also give very short in-place algorithms for computing the first n Tangent or Secant numbers in O(n2) integer operations. These algorithms are extremely simple, and fast fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2015

ISSN: 0096-3003

DOI: 10.1016/j.amc.2015.06.123